The Computational 2D Materials Database. high-throughput modeling and discovery of atomically thin crystals

Friday 07 Sep 18
|
We introduce the Computational 2D Materials Database (C2DB), which organises a variety of structural, thermodynamic, elastic, electronic, magnetic, and optical properties of around 1500 two-dimensional materials distributed over more than 30 different crystal structures. Material properties are systematically calculated by state-of-the-art density functional theory and many-body perturbation theory ( and the Bethe–Salpeter equation for ~250 materials) following a semi-automated workflow for maximal consistency and transparency.

The C2DB is fully open and can be browsed online (http://c2db.fysik.dtu.dk) or downloaded in its entirety. In this paper, we describe the workflow behind the database, present an overview of the properties and materials currently available, and explore trends and correlations in the data. Moreover, we identify a large number of new potentially synthesisable 2D materials with interesting properties targeting applications within spintronics, (opto-)electronics, and plasmonics. The C2DB offers a comprehensive and easily accessible overview of the rapidly expanding family of 2D materials and forms an ideal platform for computational modeling and design of new 2D materials and van der Waals heterostructures.

Sten Haastrup, Mikkel Strange, Mohnish Pandey, Thorsten Deilmann, Per S Schmidt, Nicki F Hinsche, Morten N Gjerding, Daniele Torelli, Peter M Larsen, Anders C Riis-Jensen, Jakob Gath, Karsten W Jacobsen,Jens Jørgen Mortensen,Thomas Olsen and Kristian S Thygesen

IOPscience

Read the article

News and filters

Get updated on news that match your filter.