In the potential region controlled by kinetics, such a lower ECSA is counterbalanced by the high specific activity. At higher overpotentials, however, which are often applied in real systems, a low ECSA leads to limitations in the reaction rate not by kinetics, but by mass transport. Here we report on self-supported platinum–cobalt oxide networks that combine a high specific activity with a high ECSA. The high ECSA is achieved by a platinum–cobalt oxide bone nanostructure that exhibits unprecedentedly high mass activity for self-supported ORR catalysts. This concept promises a stable fuel-cell operation at high temperature, high current density and low humidification.
Gustav W. Sievers, Anders W. Jensen, Jonathan Quinson, Alessandro Zana, Francesco Bizzotto, Mehtap Oezaslan, Alexandra Dworzak, Jacob J. K. Kirkensgaard, Thomas E. L. Smitshuysen, Shima Kadkhodazadeh, Mikkel Juelsholt, Kirsten M. Ø. Jensen, Kirsten Anklam, Hao Wan, Jan Schäfer, Klára Čépe, María Escudero-Escribano, Jan Rossmeisl, Antje Quade, Volker Brüser & Matthias Arenz
NATURE MATERIALS
Read the article